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We present Poisson structures for a hamiltonian, time-dependent , formulation of the Ginzburg-Landau theory of super- 
conductor dynamics. The resulting equations are seen to be related to the London theory. Application of irreversible 

thermodynamics leads to an extension of these equations to the dissipative case. 

Introduction. For superconductors, there are two 
phenomenological theories: the London theory and 
the Ginzburg-Landau theory [ 11, which are mutually 
complementary. The London theory is time depen- 
dent, but purely classical; while the Ginzburg-Landau 
theory is independent of time, but uses quantum 
mechanical arguments to predict the effect of a mag- 
netic field on a supercurrent. 

There have been various attempts to generalize the 
Ginzburg-Landau theory to account for time depen- 
dence. One may refer to, e.g., ref. [2] for a survey of 
the literature. These attempts include purely micros- 
copic approaches [3] that start from BCS theory, in 
the special case of a gapless superconductor; hybrid 
microscopic and phenomenological approaches [4] ; 
and purely phenomenological approaches [ 51. Despite 
this activity, an accepted time-dependent Landau- 
Ginzburg equation for the general case does not yet 
seem to exist. The present paper addresses the prob- 
lem from the phenomenological viewpoint. 

First, for the case without dissipation, we con- 
struct a dynamical Ginzburg-Landau theory in the 
hamiltonian formulation. The key element of this 
construction is the method of transformation of Pois- 
son brackets. The resulting time-dependent Ginzburg- 
Landau equations pass over to the London equations 
in a way which establishes a correspondence between 
Ginzburg-Landau variables and London variables. 
Such a correspondence lends credence to this particular 
theory, because of its proper London limit. Moreover, 
the phase of the order parameter and the number 

density of charge carriers turn out to be canonically 
conjugate, as one would expect by analogy to the 
quantum mechanical situation. 

However, our results at this stage differ from those 
of ref. [5] for Ginzburg-Landau dynamics without 
dissipation. 

To explore the physical consequences of this dif- 
ference, one should include dissipation, since time de- 
pendence in superconductors generally involves dissipa- 
tion. To account for dissipation, we modify our dy- 
namical Ginzburg-Landau equations according to the 
rules of irreversible thermodynamics: generalized 
forces and fluxes are introduced formally into the 
equations and then identified in terms of state vari- 
ables via their transformation properties as scalars, 
vectors, etc. In this way kinetic coefficients appear, 
which can be made to satisfy Onsager relations and 
the requirement of positive-entropy production rate. 

The resulting equations for the dissipative 
Ginzburg-Landau theory agree, in a special case, 
with earlier work [3,4], which relies upon microscopic 
theory, as mentioned before. However, our results 
differ again from those in ref. [5], because of the un- 
derlying difference in the nondissipative limit. 

The plan of the paper is as follows. Starting from 
the Ginzburg-Landau free energy (with both electric- 
and magnetic-field energies included), we introduce 
auxiliary variables which are canonically conjugate to 
the real and imaginary parts of the complex order 
parameter, $ = JI1 t i$‘, of the Ginzburg-Landau 
theory. These conjugate variables are related algebra- 

0 031-9163/83/0000-OOOO/$ 03.00 0 1983 North-Holland 177 



Volume 93A. number 4 PHYSICS LETTERS 10 January 1983 

ically to the total charge density p, in a manner similar 
to that in the canonical theory of superfluids [6]. Use 
of a thermodynamic formula for variations of the free 
energy identifies terms in the canonical equations, 
which reduce to the usual Ginzburg-Landau equations 
in the proper static limit. 

Next, we eliminate the auxiliary canonical variables 
by transforming to a new, noncanonical hamiltonian 
structure, which involves only the original variables 
p, G1. G2, E,A; where E is the electric field and A 
is the magnetic vector potential. In this transformed 
hamiltonian structure, one sees that the modulus- 
squared of the order parameter, 1 $12, is preserved in 
time by arzy hamiltonian, in particular by the Ginz- 
burg-Landau hamiltonian. This result differs from 
that of ref. [S]. 

A re-transformation of the hamiltonian structure 
leads to a canonical Poisson bracket in the following 
pairs of variables: total charge density p, paired with 
the phase of the order parameter @; and components 
of the electric field Ei, paired with corresponding 
components of the magnetic vector potential Ai. A 
final choice of new variables transforms the time-de- 
pendent, non-dissipative Ginzburg-Landau equations 
into the London equations, via a map in which the 
phase gradient of the order parameter is related to 
the London “velocity” of superconducting charge 
carriers. 

Dissipation is then added to the dynamical 
Ginzburg-Landau equations, according to the pre- 
scription of irreversible thermodynamics mentioned 
earlier, and the results are compared with those in the 
literature. 

Ginzburg-Landau dynamics without dissipation. 
In the static Ginzburg-Landau theory [l] the free 
energy is given in terms of a complex order parameter 
J/=$l +iG2,a n d a magnetic vector potential A. The 
Ginzburg-Landau equations are obtained by station- 
arity of the free energy under variations with respect 
to $ and A. To make this theory dynamical, one adds 
the electrical energy to the free energy (which be- 
comes also a function of the total charge density p) 
and regards the modified energy as a hamiltonian, 

H=S [;l(iV - e*A)ti12 + Fdo, s, I G 12) 

+ f(E2 +B2)] d3x , 
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(1) 

where B = curl A and we employ natural units, with 
h = m* = c = 1, respectively for Planck’s constant h, 
the Cooper pair mass m*, and the speed of light c. 
Dependence of the free energy F upon entropy den- 
sity s is unimportant at this stage, because without 
dissipation the entropy density is taken to be time in- 
dependent. 

To construct the canonical hamiltonian equations, 
variables @1 and @2 are introduced, which are assumed 
to be canonically conjugate to $I and Ic/“, respectively. 
These four conjugate variables are related to the total 
charge density p by 

P = (9%’ - ti’@) 1 (3) 

in a manner similar to the canonical theory of super- 
fluids [6]. 

By taking into account the thermodynamic relation 
p = 6F/6p, for the chemical potential p, one finds the 
following canonical equations: 

d’ = -6H/6JI’ , 4’ = -SH/SJ/2 . 

J’ = 6H/6@ = /_Q2 , ij2 = &H/&j2 = -&’ , (3) 

where, e.g., d1 = a,$l is the partial derivative with re- 
spect to time. The last two equations imply 

a,iti12 =o, IdA2 = (W + (P)” 1 

6= -p, @i= tan- 1(J/2/$1). (4) 

The equation d, = -p is the Josephson phase relation 
[7]. Thus, in the absence of dissipation, the Josephson 
phase relation controls the time dependence of the 
order parameter. As we shall see below, the remaining 
dynamics of the Ginzburg-Landau theory arises es- 
sentially as in the London theory. 

The hamiltonian (1) produces electromagnetic 
equations, 

I? = 6H/6A 

= curl B - ~*($J~vI,!I~ - J/20$1) + e*‘IJ/I’A , 

k = -6H/6E = -E. (5) 

These are in standard form, provided we identify the 
current density J as 

J=e*(rl,lVti2 - G2V$l) - e*2j$12A . (6) 

The static Ginzburg-Landau equations can be re- 
covered from (3) and (5) by setting all time derivatives 



to zero and ignoring the equations for 4. 
Next. we transform the canonical bracket in the 

variables (@‘, $l), ($?, $*), (E, A), into a noncanon- 
ical one, by elimination of $I, qj2 in favor of the 
charge density p, given by (2). In terms of (p, J/l, $*, 
E. A), the new bracket is 

+ 6H 6K 6K 6H 
(7) 

where we sum over repeated indices. The first two 
terms here are the same as the bracket which appears 
in the theory of superfluid liquid 3He-A [8]. 

The dynamical equations follow from the non- 
canonical bracket (7) as, 

li/’ = {H, $‘} = $“6H/6p =/..@ , 

J2 = {H, $*} = -$h5H/6p = +$’ , 

i= {KP)=-$ *6H/6$l + t//‘6H/tiJ/’ 

:= -g&l + 11,1,$* ) (8) 

with electromagnetic equations as before, in (5). The 
expression in the i equation also appears in the state- 
ment of gauge invariance of the hamiltonian H, namely 

$I~SH/S~C/~ - $2SH/S$1 + div(GH/GA)= 0. (9) 

Restated in terms of charge density p and current 
density J, the gauge invariance equation (9) becomes 

j +divJ=O. (10) 

which, of course, expresses local conservation of 
charge. Thus, the current density J and charge density 
p are properly identified by (6) and (2), respectively. 

In terms of the new variables /$I* and a’, defined 
in (4), the Poisson bracket (7) regains its canonical 
form; with canonical variables (p, a), (E, A). More- 
over, the modulus-squared of the order parameter, 
1$12, is a “Casimir function”, whose time derivative 
is zero for any hamiltonian. 

In terms of 1 $I* and @, the hamiltonian (1) is 
given by 

H=~{$[(VI$~l)2 +(V9-A)*e*I$12] 

+F(p, s, j~Jl*) + ;(E* +B2)}d3x . (11) 

The new canonical hamiltonian equations are 

j =&H/6@ = -div[(V@ -A)l$12e*] = -div./, (12) 

4 = -6H/6p = -1-1, (13) 

~=6H/6~=curl~-e*(V~--)I~/12, (14) 

k = -6H/6E = -E , (15) 

where B = curl A. As usual, Gauss’s law, 

V*E=p, (16) 

is preserved by the dynamics. 
Suppose we now transform to variables 

ps = e*j$l* , u=v@-A, x=@. (17) 

We then obtain the following equations, by taking 
the gradient of (13) and adding to (15): 

i=-divpSu, ;=-VptE, 

. 
E=-psutcurlB, k=E. (18) 

These equations are just the London equations, orig- 
inally introduced by London in 1935 to explain the 
Meissner effect. Thus, the dynamical Ginzburg- 
Landau equations transform into the “classical” 
London equations under the mapping (17), which 
relates the phase gradient V@ of the order parameter 
in the Ginzburg-Landau theory to the superconduct- 
ing “velocity” u in the London theory. 

Remark. At this point, we have shown that time 
dependence of the Ginzburg-Landau theory arises, 
from the phenomenological viewpoint, as a consequence 
of the Josephson phase relation (5) coupled to essen- 
tially the London equations, with the added proviso 
that the modulus-squared of the order parameter is 
independent of time. These results appear obvious and 
natural when the problem is approached in terms of 
hamiltonian structure. 

Recently this problem has also been addressed in 
terms of constrained variational principles by Geurst 

[5] who comes tantalizingly close to our answer, but 

finds SH/Sl$i2 = 0, instead of ijtl$i2 = 0. Now, in 
terms of hamiltonian structure, I$l* is a “Casimir 
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function” i.e., is preserved 
vari- 

ables. Consequently, 1 $I2 must be preserved in time 
by the Ginzburg-Landau hamiltonian (1). Hence, 
atj$j2 = 0 is the proper result. 

Ginzburg-Landau dynamics with dissipation. The 
results obtained in the previous section can be ex- 
tended to the dissipative case by following standard 
techniques, see e.g. ref. [6]. When dissipation occurs, 
the dynamical equations for a superconductor be- 
come, formally, 

p+div(J+K)=O, J1 -prj2=.Z1, 

J2 +p@ =Z2, s’+diva=R/T, 

&=curlB-(J+K), k=-E, (19) 

where s is the entropy density, which is now time de- 
pendent; J is the supercurrent density given in (6), 
which continues to satisfy 

divJ=ElG2 - f2+l , (20) 

with .$l, t2 given, as in (8) by .$’ =&H/6$‘, t2 =6H/ 
6G2; H as before;p = SH/Cip and T=6H/6s. These 
state variables, plus the field E and A, must determine 
the other functions: the normal current density K, 
the order dissipation parameters Z1 and Z2, the en- 
tropy flux a and the dissipation function R. 

By requiring that the energy conservation law be 
of the form 

&+divQ=O, (21) 

we find the following expressions: 

Q=Ta+M, 

R = -a-VT + K*(E - V/J) - (l’Zl + t2Z2). (22) 

Then, separation of scalar and vector components of 
the generalized forces and fluxes results in 

Z1 = -0.31 + r1191%’ + (02 - r21$1%2 , 

z2 = -032 + r219w - (01 - 71 l$PP 3 (23) 

for the scalar components and 

(24) 

for the vector components. In ref. [5], the thermo- 
electric contribution to K is attributed to Ginzburg 
[9] (see also ref. [lo]). 

According to the thermodynamics of irreversible 
processes, the kinetic coefficients must (a) satisfy 
Onsager relations and (b) keep R positive. To satisfy 
the Onsager relations requires al2 = cy21 and y1 = 0. 
The requirement that R be positive leads to the con- 
ditions fll f yl Irji2 > 0; (~1 1, o!‘22 > 0; sign o12 
= sign[(E - Vp).(VT)], or else al2 = 0. 

A special case of eqs. (19) can be compared with 
results in the literature [3-S]. When 

O=a 11 =a12 =a21 =Yl 3 “22 =a>O, (25) 

we have the following expressions to subsitute into 
eqs. (19): 

Z1 = -f31E1 + p212 , Z2 = -p2,$1 - p1g2 , a = 0, 

K = ar(E - VP) , R = PI [(E’)2 + (E2)21 + a@ - 0~)~ 

(26) 

In particular, the time-dependent Ginzburg-Landau 
equation for the complex order parameter, $ = G1 
t iG2, becomes 

$ti&=-pt:=z, (27) 

where,$=[1+i12,p=flI tifl’,Z=Z1 tiZ2.1nthis 
limiting case, aside from differences in notation, we 
recover the results of Schmid [4], which are obtained 
by a hybrid microscopic and phenomenological ap- 
proach, and of Gor’kov and Eliashberg [3], obtained 
from the microscopic theory in the special case of a 
gapless superconductor. 

The result (27) however, differs from the result of 
Geurst [S], who finds, for example, that in this limit 
the Josephson relation (4) continues to hold. In con- 
trast, we find that the modulus and phase of the order 
parameter obey 

a,[$@ = 2 Re(Z*$), 6 tI.r = -Im(Z*rj)/1$12 .(28) 

And in particular, the Josephson relation (4) does not 
continue to hold. Evidently this discrepancy is due to 
the difference in the underlying non-dissipative equa- 
tions noted earlier. 

The results obtained here could also be extended 
to (a) include order parameters which take values in a 
non-abelian Lie algebra, or (b) let the “charges” lie in 
the dual space to a Lie algebra and interact, say, via a 
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Yang-Mills field. Such extensions would, thus, com- 
bine earlier results obtained for 3He-A [8] and chro- 
mohydrodynamics [ 111. A possible application of ex- 
tension (a) is to superconductors with spin paramag- 
netism. 
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